Cover
Vol. 1 No. 1 (2025): ETES

Published: December 31, 2025

Pages: 45-73

Review Article

A Comprehensive Review of Advanced Solar Drying Technologies: Concentrators, Optical Enhancements, and Thermal Energy Storage Systems

Abstract

The conventional open sun drying is not efficient, it is slow and contaminated and there is a necessity to develop highly advanced technologies in solar drying. The review looks critically at solar dryers that are improved with concentrator, optical, thermal energy storage (TES) or phase-change materials (PCM). The incorporation of parabolic trough or compound parabolic concentrators leads to a high temperature of over 100-115 oC and a thermal efficiency of up to 88 %. Reflective walls are also made to enhance optical capturing by up to 37.6 %, and shorten drying time by 15-20 %. TES/PCM systems increase the operation of TES systems beyond the sunset, nano-enhanced PCMs reduce drying time by 40% and enhance thermal efficiency by more than 48%. These systems demonstrate short payback periods (0.43-5.14 years) with regard to economics. They minimise the emission of CO2 by 2-44 tons/ lifetime of systems. These combined technologies have addressed intermittency and low efficiency and enabled solar drying to be a reliable and cost-effective and sustainable solution, as the UN Sustainable Development Goals of clean energy and climate action suggest.

References

  1. L. A. Valencia Ceballos, E. C. López-Vidaña, C. K. Romero-Perez, J. Escobedo-Bretado, O. García-Valladares, and I. R. Martín Domínguez, "Techno-economic and environmental assessment of a photovoltaic-thermal (PV-T) solar dryer for habanero chili (Capsicum chinense): 4E (Energy, Economic, Embodied and Environmental) analysis," Renew. Energy, vol. 122, p. 122758, 2025, https://doi.org/10.1016/J.RENENE.2025.122758
  2. S. Chtioui and A. Khouya, "Mathematical modeling and performance evaluations of a wood drying process using photovoltaic thermal and double-pass solar air collectors," Appl. Therm. Eng., vol. 255, p. 123901, 2024, https://doi.org/10.1016/J.APPLTHERMALENG.2024.123901
  3. A. Gupta, B. Das, E. Arslan, M. Das, M. Kosan, and O. F. Can, "Artificial neural networks based computational and experimental evaluation of thermal and drying performance of partially covered PVT solar dryer," Process Saf. Environ. Prot., vol. 183, pp. 1170–1185, 2024, https://doi.org/10.1016/J.PSEP.2024.01.068
  4. E. Çiftçi, A. Khanlari, A. Sözen, I. Aytaç, and A. D. Tuncer, "Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: a numerical and experimental investigation," Renew. Energy, vol. 180, p. 180, 2021, https://doi.org/10.1016/j.renene.2021.08.081
  5. S. Shoeibi, H. Kargarsharifabad, S. A. A. Mirjalily, and M. Zargarazad, "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Appl. Energy, vol. 304, p. 117778, Dec. 2021, https://doi.org/10.1016/J.APENERGY.2021.117778
  6. K. Stephan and A. Laesecke, "The thermal conductivity of fluid air," J. Phys. Chem. Ref. Data, vol. 14, no. 1, pp. 227–234, 1985, https://doi.org/10.1063/1.555749
  7. S. B. Kim and H. U. Choi, "Numerical analysis of photovoltaic-thermal air collector with fins and rectangular turbulators," Thermal Sci. Eng. Progress, vol. 59, p. 103393, 2025, https://doi.org/10.1016/J.TSEP.2025.103393
  8. E. Y. Gürbüz, I. Şahinkesen, A. D. Tuncer, and A. Keçebaş, "Design and experimental analysis of a parallel-flow photovoltaic-thermal air collector with finned latent heat thermal energy storage unit," Renew. Energy, vol. 217, p. 119154, 2023, https://doi.org/10.1016/J.RENENE.2023.119154
  9. Z. Zhao, L. Zhu, Y. Wang, Q. Huang, and Y. Sun, "Experimental investigation of the performance of an air type photovoltaic thermal collector system with fixed cooling fins," Energy Rep., vol. 9, pp. 93–100, 2023, https://doi.org/10.1016/J.EGYR.2023.02.059
  10. R. Gad, H. Mahmoud, S. Ookawara, and H. Hassan, "Evaluation of thermal management of photovoltaic solar cell via hybrid cooling system of phase change material inclusion hybrid nanoparticles coupled with flat heat pipe," J. Energy Storage, vol. 57, p. 106185, Jan. 2023, doi: https://doi.org/10.1016/J.EST.2022.106185
  11. D. Su, Y. Jia, G. Alva, L. Liu, and G. Fang, "Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials," Energy Convers. Manag., vol. 131, pp. 79–89, 2017, https://doi.org/10.1016/J.ENCONMAN.2016.11.002
  12. A. Boubekri, H. Benmoussa, and D. Mennouche, "Solar drying kinetics of date palm fruits assuming a step-wise air temperature change," J. Eng. Sci. Technol., vol. 4, no. 3, pp. 292–304, 2009
  13. S. Dubey, G. S. Sandhu, and G. N. Tiwari, "Analytical expression for electrical efficiency of PV/T hybrid air collector," Appl. Energy, vol. 86, no. 5, pp. 697–705, 2009, https://doi.org/10.1016/J.APENERGY.2008.09.003
  14. R. Stropnik and U. Stritih, "Increasing the efficiency of PV panel with the use of PCM," Renew. Energy, vol. 97, pp. 671–679, 2016, https://doi.org/10.1016/J.RENENE.2016.06.011
  15. S. Tiwari and G. N. Tiwari, "Grapes (Vitis vinifera) drying by semitransparent photovoltaic module (SPVM) integrated solar dryer: an experimental study," Heat Mass Transfer, vol. 54, no. 6, pp. 1637–1651, 2018, https://doi.org/10.1007/S00231-017-2257-3/TABLES/7
  16. J. S. Al-Huwaidi, M. A. Al-Obaidi, A. T. Jarullah, C. Kara-Zaitri, and I. M. Mujtaba, "Modeling and simulation of a hybrid system of trickle bed reactor and multistage reverse osmosis process for the removal of phenol from wastewater," Comput. Chem. Eng., vol. 153, p. 107452, 2021, https://doi.org/10.1016/j.compchemeng.2021.107452
  17. O. M. A. Al-Hotmani, M. A. Al-Obaidi, Y. M. John, R. Patel, F. Manenti, and I. M. Mujtaba, "Minimisation of energy consumption via optimisation of a simple hybrid system of multi effect distillation and permeate reprocessing reverse osmosis processes for seawater desalination," Comput. Chem. Eng., vol. 148, p. 107261, 2021, https://doi.org/10.1016/j.compchemeng.2021.107261
  18. H. Panchal and A. Awasthi, "Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes," Heat Mass Transfer, vol. 53, no. 6, pp. 1943–1955, 2017, https://doi.org/10.1007/S002310161953-8/METRICS
  19. S. Tiwari and G. N. Tiwari, "Thermal analysis of photovoltaic thermal integrated greenhouse system (PVTIGS) for heating of slurry in potable biogas plant: an experimental study," Sol. Energy, vol. 155, pp. 203–211, 2017, https://doi.org/10.1016/J.SOLENER.2017.06.021
  20. S. Agrawal, G. N. Tiwari, and H. D. Pandey, "Indoor experimental analysis of glazed hybrid photovoltaic thermal tiles air collector connected in series," Energy Build., vol. 53, pp. 145–151, 2012, https://doi.org/10.1016/J.ENBUILD.2012.06.009
  21. S. Agrawal and G. N. Tiwari, "Exergoeconomic analysis of glazed hybrid photovoltaic thermal module air collector," Sol. Energy, vol. 86, no. 9, pp. 2826–2838, 2012, https://doi.org/10.1016/J.SOLENER.2012.06.021
  22. A. Gupta, A. Biswas, B. Das, and B. V. Reddy, "Development and testing of novel photovoltaic-thermal collector-based solar dryer for green tea drying application," Sol. Energy, vol. 231, pp. 1072–1091, 2022, https://doi.org/10.1016/J.SOLENER.2021.12.030
  23. E. Arslan and M. Aktaş, "4E analysis of infrared-convective dryer powered solar photovoltaic thermal collector," Sol. Energy, vol. 208, pp. 46–57, 2020, https://doi.org/10.1016/J.SOLENER.2020.07.071
  24. Y. Chaibi, M. Malvoni, T. El Rhafiki, T. Kousksou, and Y. Zeraouli, "Artificial neural-network based model to forecast the electrical and thermal efficiencies of PVT air collector systems," Clean Eng Technol, vol. 4, p. 100132, 2021, https://doi.org/10.1016/J.CLET.2021.100132
  25. M. A. Al-Nimr, A. I. Dawahdeh, and J. A. Al-Omari, "Dual power generation modes for thermally regenerative electrochemical cycle integrated with concentrated thermal photovoltaic and phase change material storage," J. Energy Storage, vol. 58, p. 106373, 2023, https://doi.org/10.1016/J.EST.2022.106373
  26. H. Hasan, S. Alsadaie, M. A. Al-Obaidi, and I. Mujtaba, "Dynamic modelling and simulation of industrial scale multistage flash desalination process," 2023. [Online]. Available: http://creativecommons.org/licenses/by/4.0/
  27. W. Fan, G. Kokogiannakis, Z. Ma, and P. Cooper, "Development of a dynamic model for a hybrid photovoltaic thermal collector – solar air heater with fins," Renew. Energy, vol. 101, pp. 816–834, 2017, https://doi.org/10.1016/J.RENENE.2016.09.039
  28. M. Simo-Tagne and L. Bennamoun, "Numerical study of timber solar drying with application to different geographical and climatic conditions in Central Africa," Sol. Energy, vol. 170, pp. 454–469, 2018, https://doi.org/10.1016/J.SOLENER.2018.05.070
  29. M. Simo-Tagne, H. D. Tamkam Etala, A. Tagne Tagne, M. C. Ndukwu, and M. El Marouani, "Energy, environmental and economic analyses of an indirect cocoa bean solar dryer: a comparison between natural and forced convections," Renew. Energy, vol. 187, pp. 1154–1172, 2022, https://doi.org/10.1016/J.RENENE.2022.02.015
  30. J. Vásquez, A. Reyes, and N. Pailahueque, "Modeling, simulation and experimental validation of a solar dryer for agro-products with thermal energy storage system," Renew. Energy, vol. 139, pp. 1375–1390, 2019, https://doi.org/10.1016/J.RENENE.2019.02.085
  31. D. Jain, "Modeling the system performance of multi-tray crop drying using an inclined multi-pass solar air heater with in-built thermal storage," J. Food Eng., vol. 71, no. 1, pp. 44–54, 2005, https://doi.org/10.1016/J.JFOODENG.2004.10.016
  32. S. Tiwari, G. N. Tiwari, and I. M. Al-Helal, "Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer," Sol. Energy, vol. 133, pp. 421–428, 2016, https://doi.org/10.1016/J.SOLENER.2016.04.033
  33. S. Ebadi, S. H. Tasnim, A. A. Aliabadi, and S. Mahmud, "Melting of nano-PCM inside a cylindrical thermal energy storage system: numerical study with experimental verification," Energy Convers. Manag., vol. 166, pp. 241–259, 2018, https://doi.org/10.1016/J.ENCONMAN.2018.04.016
  34. Chtioui and A. Khouya, "Improving solar drying efficiency of Pine wood with compound parabolic concentrator: comparative study in Continental and Mediterranean climates," Sol. Energy, vol. 283, p. 112981, 2024, https://doi.org/10.1016/J.SOLENER.2024.112981
  35. F. Román, Z. Munir, and O. Hensel, "Mathematical modelling of a latent heat storage: influence of PCM thermal conductivity and enthalpy-temperature relationship," J. Energy Storage, vol. 94, p. 112424, 2024, https://doi.org/10.1016/J.EST.2024.112424
  36. V. B. Gawande, A. S. Dhoble, D. B. Zodpe, and S. Chamoli, "Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped ribs," Sol. Energy, vol. 131, pp. 275–295, 2016, https://doi.org/10.1016/J.SOLENER.2016.02.040
  37. S. Al Arni et al., "Novel multi-layer nano-modified PCM configuration for efficient thermal management of photovoltaic-thermal systems," J. Energy Storage, vol. 103, p. 114352, 2024, https://doi.org/10.1016/J.EST.2024.114352
  38. R. Karthikeyan, P. Saji Raveendran, P. Thangavel, R. Prabakaran, and S. C. Kim, "Techno-economic evaluation of a screw conveyor-based solar dryer for Ivy gourd dehydration," Case Studies in Thermal Engineering, vol. 75, p. 107056, 2025, https://doi.org/10.1016/j.csite.2025.107056
  39. P. Tsopbou Ngueagni and A. Mawire, "Experimental drying characteristics of a portable solar dryer for apple slices in consecutive and continuous tests," Scientific African, 2025, e03012, https://doi.org/10.1016/j.sciaf.2025.e03012
  40. F. L. Rashid, S. A. Kadhim, A. Bouabidi, M. K. Abdalrahem, M. A. Al-Obaidi, A. M. Ashour, and E. B. Agyekum, "Recent advances of solar dryer with energy storage: A comprehensive review," J. Stored Prod. Res., vol. 115, 2026, https://doi.org/10.1016/j.jspr.2025.102820
  41. P. Salami, M. Safvati, M. S. Barghi Jahromi, V. Kalantar, and H. Samimi-Akhijahani, "Classification of fruit solar dryers and the role of phase change materials in enhancing performance: A review," Solar Energy, vol. 297, p. 113570, 2025, https://doi.org/10.1016/j.solener.2025.113570
  42. N. I. Román-Roldán, A. López-Ortiz, J. F. Ituna-Yudonago, P. K. Nair, J. Rodríguez-Ramírez, S. Sandoval-Torres, and A. Martynenko, "A current review: Engineering design of greenhouse solar dryers exploring novel approaches," Sustainable Energy Technol. Assess., vol. 73, p. 104137, 2025, https://doi.org/10.1016/j.seta.2024.104137
  43. R. Prakash, A. Gnanasekaran, M. Rengasamy, and K. Rajaram, "A review on recent developments in natural convective solar dryer for agricultural products: Methods, collector design, influencing factors, performance and challenges," Renew. Sustain. Energy Rev., vol. 215, p. 115613, 2025, https://doi.org/10.1016/j.rser.2025.115613
  44. J. T. Liu, M. Li, Q. F. Yu, and D. L. Ling, "A novel parabolic trough concentrating solar heating for cut tobacco drying system," Int. J. Photoenergy, vol. 2014, Article ID 209028, 2014, http://dx.doi.org/10.1155/2014/209028
  45. S. A. Sulaiman and F. F. F. Taha, "Drying of oil palm fronds using concentrated solar thermal power," Appl. Mechan. Mater., vol. 699, pp. 449–454, 2014, http://dx.doi.org/10.4028/www.scientific.net/AMM.699.449
  46. T. S. M. Ky, B. Dianda, E. Ouedraogo, S. Ouedraogo, and D. J. Bathiebo, "Novel natural convection process: Indirect solar dryer built with spherical concentrators. Application to tomato drying," Elixir Thermal Eng., vol. 122, pp. 51615–51620, 2018.
  47. B. Lamrani, A. Khouya, and A. Draoui, "Energy and environmental analysis of an indirect hybrid solar dryer of wood using TRNSYS software," Solar Energy, vol. 183, pp. 132–145, 2019, https://doi.org/10.1016/j.solener.2019.03.014
  48. J. Hosseinzadeh, A. Mohhebi, and R. Loni, "Optical simulation of a solar parabolic collector and cavity receivers using ray-tracing software TracePro with native conditions of Iran for solar dryers," INMATEH - Agric. Eng., vol. 59, no. 3, pp. 197-206, 2019, https://doi.org/10.35633/inmateh-59-22
  49. S. Spall and V. P. Sethi, "Design, modeling and analysis of efficient multi-rack tray solar cabinet dryer coupled with north wall reflector," Solar Energy, vol. 211, pp. 908–919, 2020, https://doi.org/10.1016/j.solener.2020.10.012
  50. M. Seemwanga, E. Makule, and S. I. Kayondo, "Performance analysis of an improved solar dryer integrated with multiple metallic solar concentrators for drying fruits," Solar Energy, vol. 204, pp. 419–428, 2020, https://doi.org/10.1016/j.solener.2020.04.065
  51. H. Teklu, M. Bayray, D. Abay, and M. Kalamegan, "Performance enhancement of natural convection indirect solar dryer by integrating reflectors," Momona Ethiopian J. Sci., vol. 12, no. 2, pp. 212–222, 2020, http://dx.doi.org/10.4314/mejs.v12i2.4
  52. I. Ajunwa, D. S. Yawas, D. M. Kulla, M. B. Abdullahi, I. U. Ibrahim, and M. Jnr Iorpenda, "Performance improvement of an indirect solar dryer with single axis manual tracking system and angular simulation of the flat plate collector reflectors," Arid Zone J. Eng. Technol. Environ., vol. 16, no. 2, pp. 293–308, 2020.
  53. M. J. Simón Castellano, R. A. López Quiroz, S. Taramona, A. Gallo, P. Contreras-Lallana, and J. Gómez Hernández, "Drying of asphalt plant aggregates using concentrated solar energy," SWC2021 Proceedings, International Solar Energy Society, 2021, http://dx.doi.org/10.18086/swc.2021.26.06
  54. T. Hosseini and L. Zhang, "Process modeling and techno-economic analysis of a solar thermal aided low-rank coal drying-pyrolysis process," Fuel Process. Technol., vol. 220, p. 106896, 2021, https://doi.org/10.1016/j.fuproc.2021.106896
  55. S. Shoebi, H. Kargarsharifabad, S. A. A. Mirjalily, and M. Zargarazad, "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Appl. Energy, vol. 304, p. 117778, 2021, https://doi.org/10.1016/j.apenergy.2021.117778
  56. H. Ebadi, D. Zare, M. Ahmadi, and G. Chen, "Performance of a hybrid compound parabolic concentrator solar dryer for tomato slices drying," Solar Energy, vol. 215, pp. 44–63, 2021, https://doi.org/10.1016/j.solener.2020.12.026
  57. F. Ben Othman, F. Eddhibi, A. Bel Hadj Ali, A. Fadhel, Ö. Bayer, İ. Tari, A. Guizani, and M. Balghouthi, "Investigation of olive mill sludge treatment using a parabolic trough solar collector," Solar Energy, vol. 232, pp. 344–361, 2022, https://doi.org/10.1016/j.solener.2022.01.008
  58. A. Fadhel, F. Eddhibi, K. Charfi, and M. Balghouthi, "Investigation of a linear Fresnel solar collector (LFSC) prototype for phosphate drying," Energy Nexus, vol. 10, p. 100188, 2023, https://doi.org/10.1016/j.nexus.2023.100188
  59. R. Jain, A. S. Paul, D. Sharma, and N. L. Panwar, "Enhancement in thermal performance of solar dryer through conduction mode for drying of agricultural produces," Energy Nexus, vol. 9, p. 100182, 2023, https://doi.org/10.1016/j.nexus.2023.100182
  60. M. I. Hussain and G. H. Lee, "Concentrated solar powered agricultural products dryer: Energy, exergoeconomic and exergo-environmental analyses," J. Cleaner Prod., vol. 393, p. 136162, 2023, https://doi.org/10.1016/j.jclepro.2023.136162
  61. V. R. Khawale, B. N. Kale, and V. G. Dhore, "Experimental study and comparison of integrated solar dryer with and without reversed absorber and reflector," Int. J. Renewable Energy Technol., vol. 14, no. 1, pp. 1–15, 2023.
  62. I. Bori, J. Y. Jiya, A. M. Orah, S. Bako, and M. O. Oyebamiji, "Heat transfer analysis of a concentrated-type solar dryer for ginger," GU J. Sci., Part A, vol. 11, no. 4, pp. 690–700, 2024, https://doi.org/10.54287/gujsa.1538840
  63. S. E. Bousbia Salah, A. Benseddik, N. Meneceur, A. Zine, and K. Deghoum, "Design and realization of a new solar dryer assisted by a parabolic trough concentrator (PTC) with a dual-axis solar tracker," Solar Energy, vol. 283, p. 113001, 2024, https://doi.org/10.1016/j.solener.2024.113001
  64. S. Chtioui and A. Khouya, "Improving solar drying efficiency of Pine wood with compound parabolic concentrator: comparative study in Continental and Mediterranean climates," Solar Energy, vol. 283, p. 112981, 2024, https://doi.org/10.1016/j.solener.2024.112981
  65. S. Kumar, H. K. Ghritlahre, S. Agrawal, and S. Shekhar, "Investigation of a novel mixed-mode solar dryer using north wall reflector: An experimental study," Solar Energy, vol. 282, p. 112909, 2024, https://doi.org/10.1016/j.solener.2024.112909
  66. G. Muthuvairavan and S. K. Natarajan, "Experimental study on drying Kohlrabi under surface modified direct solar dryer integrated with flat plate reflector, compound parabolic concentrator, and thermal energy storage," SSRN, 2025, https://ssrn.com/abstract=5231087
  67. H. Chouchane, S. Hassani, S. Mekhilef, A. Lekbir, M. Mubin, and K. S. Tey, "A novel ribbed photovoltaic thermal solar dryer with phase change materials: Thermal regulation and drying performance," J. Energy Storage, vol. 122, p. 116380, 2025, https://doi.org/10.1016/j.est.2025.116380
  68. A. A. A. Abuelnuor, A. A. M. Omara, I. K. Salih, E. K. M. Ahmed, R. M. Babiker, and A. A. M. Mohammedali, "Experimental study on tomato drying using a solar dryer integrated with reflectors and phase change material," in Proceedings of the 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), 2020, pp. 1–5, IEEE.
  69. M. Rashidi, A. Arabhosseini, H. Samimi-Akhijahani, and A. M. Kermani, "Acceleration of the drying process of oleaster (Elaeagnus angustifolia L.) using reflectors and desiccant system in a solar drying system," Renew. Energy, vol. 171, pp. 526–541, 2021, https://doi.org/10.1016/j.renene.2021.02.094
  70. M. O. Karaağaç, A. Ergin, Ü. Ağbulut, A. E. Gürel, and İ. Ceylan, "Experimental analysis of CPV/T solar dryer with nano-enhanced PCM and prediction of drying parameters using ANN and SVM algorithms," Solar Energy, vol. 218, pp. 57–67, 2021, https://doi.org/10.1016/j.solener.2021.02.028
  71. A. E. Kabeel, P. D. L. Dharmadurai, S. Vasanthaseelan, R. Sathyamurthy, B. Ramani, A. M. Manokar, and A. Chamkha, "Experimental studies on natural convection open and closed solar drying using external reflector," Environ. Sci. Pollut. Res., 2021, https://doi.org/10.21203/rs.3.rs-357329/v1
  72. S. Dubey, K. Bhayani, C. Bhatt, S. Maiti, and S. Mishra, "Design and development of domestic solar dryer with comparative analysis of nutritional aspect of dried raisins," J. Food Eng. Technol., vol. 11, no. 1, pp. 13–21, 2022, https://doi.org/10.32732/jfet.2022.11.1.13
  73. P. L. Dharmadurai, S. Vasanthaseelan, R. Bharathwaaj, V. Dharmaraj, K. Gnanasekaran, D. Balaji, and R. Sathyamurthy, "A comparative study on solar dryer using external reflector for drying grapes," Mater. Today: Proc., vol. 50, pp. 552–559, 2022, https://doi.org/10.1016/j.matpr.2020.11.197
  74. M. Zeeshan, I. Tufail, S. Khan, I. Khan, S. Ayuob, A. Mohamed, and S. T. Chauhdary, "Novel design and performance evaluation of an indirectly forced convection desiccant integrated solar dryer for drying tomatoes in Pakistan," Heliyon, vol. 10, e29284, 2024, https://doi.org/10.1016/j.heliyon.2024.e29284
  75. S. Yematawu, B. Tamrat, D. Tarekegn, and H. Mulugeta, "Experimental testing on the performance of solar dryer equipped with evacuated tube collector, rock bed heat storage and reflectors," Energy Rep., vol. 12, pp. 453–471, 2024, https://doi.org/10.1016/j.egyr.2024.06.027
  76. D. Nakum, K. Sharma, N. L. Panwar, and G. Saichandhu, "Sustainability assessment of solar drying systems: A comparative life-cycle analysis of phase-change material-based vs. cylindrical solar dryers," Clean Energy, vol. 8, no. 4, pp. 183–196, 2024, https://doi.org/10.1093/ce/zkae049
  77. A. Y. Kebede, M. T. Tigabu, A. T. Admase, and A. J. Bezie, "Performance evaluation of diminutive solar dryer for drying of green coffee beans: In Ethiopian highlands," Case Stud. Thermal Eng., vol. 65, p. 105653, 2025, https://doi.org/10.1016/j.csite.2024.105653
  78. A. Joseph, S. Ataya, M. Ismail, and S. W. Sharshir, "Innovative system for enhancing tomato drying performance using evacuated tube solar collectors, thermal storage materials, and reflectors," Solar Energy, vol. 299, p. 113745, 2025, https://doi.org/10.1016/j.solener.2025.113745
  79. S. K. Sansaniwal and M. Kumar, "Analysis of ginger drying inside a natural convection indirect solar dryer: An experimental study," J. Mech. Eng. Sci., vol. 9, pp. 1671–1685, 2015, http://dx.doi.org/10.15282/jmes.9.2015.13.0161
  80. H. K. Dhande, S. D. Shelare, and P. B. Khope, "Developing a mixed solar drier for improved postharvest handling of food grains," Agric. Eng. Int.: CIGR J., vol. 22, no. 4, pp. 166–173, 2020.
  81. M. R. Nukulwar, "Thin-layer mathematical modeling of turmeric in indirect natural conventional solar dryer," J. Sol. Energy Eng., vol. 142, no. 4, p. 041001, 2020, http://dx.doi.org/10.1115/1.4045828
  82. M. Chaanaoui, S. Abderafi, S. Vaudreuil, and T. Bounahmidi, "Prototype of phosphate sludge rotary dryer coupled to a parabolic trough collector solar loop: Integration and experimental analysis," Solar Energy, vol. 216, pp. 365–376, 2021, https://doi.org/10.1016/j.solener.2021.01.040