Emerging Trends in Engineering and Sustainability
Login
Emerging Trends in Engineering and Sustainability
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Peer Review Process
    • Publication Ethics
    • Plagiarism and AI Policy
    • Allegations of Misconduct
    • Appeals and Complaints
    • Post-Publication Discussion and Correction
    • Citation Policy
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Open Access
    • Archiving Policy
    • Advertising Policy
    • Journal Funding Sources
    • Guide for Editors
    • Announcements
    • Contact

Search Results for Mudhar A. Al-Obaidi*

Article
A Comprehensive Review of Advanced Solar Drying Technologies: Concentrators, Optical Enhancements, and Thermal Energy Storage Systems

Mudhar A. Al-Obaidi*, Deyaa M. N. Mahmood, Farhan Lafta Rashid

Pages: 45-73

PDF Full Text
Abstract

The conventional open sun drying is not efficient, it is slow and contaminated and there is a necessity to develop highly advanced technologies in solar drying. The review looks critically at solar dryers that are improved with concentrator, optical, thermal energy storage (TES) or phase-change materials (PCM). The incorporation of parabolic trough or compound parabolic concentrators leads to a high temperature of over 100-115 oC and a thermal efficiency of up to 88 %. Reflective walls are also made to enhance optical capturing by up to 37.6 %, and shorten drying time by 15-20 %. TES/PCM systems increase the operation of TES systems beyond the sunset, nano-enhanced PCMs reduce drying time by 40% and enhance thermal efficiency by more than 48%. These systems demonstrate short payback periods (0.43-5.14 years) with regard to economics. They minimise the emission of CO2 by 2-44 tons/ lifetime of systems. These combined technologies have addressed intermittency and low efficiency and enabled solar drying to be a reliable and cost-effective and sustainable solution, as the UN Sustainable Development Goals of clean energy and climate action suggest.

1 - 1 of 1 items

Search Parameters

×

The submission system is temporarily under maintenance. Please send your manuscripts to

Go to Editorial Manager
Journal Logo
Al-Naji University

Baghdad, Iraq

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 Al-Naji University. All rights reserved, including those for text and data mining, AI training, and similar technologies.