Emerging Trends in Engineering and Sustainability
Login
Emerging Trends in Engineering and Sustainability
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Peer Review Process
    • Publication Ethics
    • Plagiarism and AI Policy
    • Allegations of Misconduct
    • Appeals and Complaints
    • Post-Publication Discussion and Correction
    • Citation Policy
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Open Access
    • Archiving Policy
    • Advertising Policy
    • Journal Funding Sources
    • Guide for Editors
    • Announcements
    • Contact

Search Results for review-tight-gas-reservoir-hydraulic-fracturing-simulation

Article
Modeling and Simulation of Hydraulic Fracturing in Tight Gas Reservoirs: A Review of Geomechanical and Flow Dynamics Approaches

Mohammed Ahmed M. Al-Janabi*, Haider A. Mahmoud, Maaly S. Asad, Ahmed Hamid Al-Taie, Asghar Gandomkar

Pages: 90-104

PDF Full Text
Abstract

This paper reviews the developments of modeling hydraulic fracturing in tight gas formations, progressing from elementary analytical models to more advanced and coupled geomechanical-flow simulators. We discuss the significant progress that has been made in understanding fluid flow behavior of ultra-low permeability formations, which has significantly improved methodology for analyzing this complex problem. Findings demonstrate the importance of using Discrete Fracture Network (DFN) and Embedded Discrete Fracture Model (EDFM) for representation of complex fracture geometries and connectivity. However, it remains a great challenge to model the stress-dependent changes in permeability and porosity and the dynamic changes of fracture properties during fracturing, as well as the multi-scale interactions between induced hydraulic fractures and natural ones. This paper provides a novel iterative modeling framework that integrates multi-scale interactions and proposes a roadmap for data-driven modeling coupled with fluid flow to enhance predictive accuracy in TGR stimulation.

1 - 1 of 1 items

Search Parameters

×

The submission system is temporarily under maintenance. Please send your manuscripts to

Go to Editorial Manager
Journal Logo
Al-Naji University

Baghdad, Iraq

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 Al-Naji University. All rights reserved, including those for text and data mining, AI training, and similar technologies.