×
The submission system is temporarily under maintenance. Please send your manuscripts to
Go to Editorial ManagerThe objective of the current study is to determine the accuracy of a computational model that has been developed to simulate polyurethane foaming reactions by comparing its results with experimental findings on the system using both physical and chemical blowing agents. There was high concordance between the model outputs and the laboratory results in regard to the temporal development of reaction temperature as well as the resulting foam density, both of which were highly faithful recreations. The discussion provided further information about the optimization of the performance of cyclohexane, particularly when used in synergy with chemically active blowing agents, which speed up foaming. Besides, the polymerization dynamics were contained in the simulation, thus providing rich information on the structural changes that occur during the foaming process. Taken together, the results present a strong basis for the process performance optimization, as well as the predictive modeling of the blowing agent behavior. In the future, it will involve expanding the simulation model to include a wider range of agents, reaction mechanisms, and kinetics.