Emerging Trends in Engineering and Sustainability
Login
Emerging Trends in Engineering and Sustainability
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Peer Review Process
    • Publication Ethics
    • Plagiarism and AI Policy
    • Allegations of Misconduct
    • Appeals and Complaints
    • Post-Publication Discussion and Correction
    • Citation Policy
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Open Access
    • Archiving Policy
    • Advertising Policy
    • Journal Funding Sources
    • Guide for Editors
    • Announcements
    • Contact

Search Results for Narjes katee

Article
The Influence of the Cell Temperature on the Performance of Mono and Poly-Crystalline Silicon Solar modules

Emad T. Hashim, Narjes katee, Deghoum Khalil, Oday Abdullah*, Zhanbolat Lyazat, Meruyert Beisembekova

Pages: 74-81

PDF Full Text
Abstract

In this research paper, it has been studied the influence of the temperature of the cell on the performance and behavior of two types of modules, which are mono-crystalline silicon (mc-Si) and poly-crystalline silicon (pc-Si) solar modules. The experimental work has been achieved under the outdoor conditions, where the range of cell temperature is between 20 and 60 °C. It was applied three different values of solar radiation [500, 750, and 1000W/m2 (standard condition, where cell temperature of 25 °C, solar irradiance of 1000 W/m², and air mass AM 1.5)]. All tests are achieved under the Iraqi weather conditions in the city of Baghdad city.  It was computed the temperature coefficients for each module and during any time during the experiment. It was found that the open circuit voltage decreased with -0.0912 V/ºC and -0.07 V/ºC when using the pc-Si module and mc-Si, respectively. While, the short circuit current increased slightly with 4.4 mA/ºC and 0.3 mA/ºC corresponding to the pc-Si and mc-Si, respectively. Finally, the lowest drop in output power was found when using the pc-Si module (-0.0915 W/ ºC), and the highest drop when using the mc-Si module (-0.1353 W/ ºC).

1 - 1 of 1 items

Search Parameters

×

The submission system is temporarily under maintenance. Please send your manuscripts to

Go to Editorial Manager
Journal Logo
Al-Naji University

Baghdad, Iraq

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

       
Copyright © 2025 Al-Naji University. All rights reserved, including those for text and data mining, AI training, and similar technologies.